Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > int0 | Unicode version |
Description: The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
int0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3228 | . . . . . 6 | |
2 | 1 | pm2.21i 575 | . . . . 5 |
3 | 2 | ax-gen 1338 | . . . 4 |
4 | equid 1589 | . . . 4 | |
5 | 3, 4 | 2th 163 | . . 3 |
6 | 5 | abbii 2153 | . 2 |
7 | df-int 3616 | . 2 | |
8 | df-v 2559 | . 2 | |
9 | 6, 7, 8 | 3eqtr4i 2070 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1241 wceq 1243 wcel 1393 cab 2026 cvv 2557 c0 3224 cint 3615 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-dif 2920 df-nul 3225 df-int 3616 |
This theorem is referenced by: rint0 3654 intexr 3904 bj-intexr 10028 |
Copyright terms: Public domain | W3C validator |