ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdif Unicode version

Theorem resdif 5148
Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
resdif  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -1-1-onto-> ( C 
\  D ) )

Proof of Theorem resdif
StepHypRef Expression
1 fofun 5107 . . . . . 6  |-  ( ( F  |`  A ) : A -onto-> C  ->  Fun  ( F  |`  A ) )
2 difss 3070 . . . . . . 7  |-  ( A 
\  B )  C_  A
3 fof 5106 . . . . . . . 8  |-  ( ( F  |`  A ) : A -onto-> C  ->  ( F  |`  A ) : A --> C )
4 fdm 5050 . . . . . . . 8  |-  ( ( F  |`  A ) : A --> C  ->  dom  ( F  |`  A )  =  A )
53, 4syl 14 . . . . . . 7  |-  ( ( F  |`  A ) : A -onto-> C  ->  dom  ( F  |`  A )  =  A )
62, 5syl5sseqr 2994 . . . . . 6  |-  ( ( F  |`  A ) : A -onto-> C  ->  ( A 
\  B )  C_  dom  ( F  |`  A ) )
7 fores 5115 . . . . . 6  |-  ( ( Fun  ( F  |`  A )  /\  ( A  \  B )  C_  dom  ( F  |`  A ) )  ->  ( ( F  |`  A )  |`  ( A  \  B ) ) : ( A 
\  B ) -onto-> ( ( F  |`  A )
" ( A  \  B ) ) )
81, 6, 7syl2anc 391 . . . . 5  |-  ( ( F  |`  A ) : A -onto-> C  ->  ( ( F  |`  A )  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( ( F  |`  A ) " ( A  \  B ) ) )
9 resres 4624 . . . . . . . 8  |-  ( ( F  |`  A )  |`  ( A  \  B
) )  =  ( F  |`  ( A  i^i  ( A  \  B
) ) )
10 indif 3180 . . . . . . . . 9  |-  ( A  i^i  ( A  \  B ) )  =  ( A  \  B
)
1110reseq2i 4609 . . . . . . . 8  |-  ( F  |`  ( A  i^i  ( A  \  B ) ) )  =  ( F  |`  ( A  \  B
) )
129, 11eqtri 2060 . . . . . . 7  |-  ( ( F  |`  A )  |`  ( A  \  B
) )  =  ( F  |`  ( A  \  B ) )
13 foeq1 5102 . . . . . . 7  |-  ( ( ( F  |`  A )  |`  ( A  \  B
) )  =  ( F  |`  ( A  \  B ) )  -> 
( ( ( F  |`  A )  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( ( F  |`  A ) " ( A  \  B ) )  <->  ( F  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( ( F  |`  A ) " ( A  \  B ) ) ) )
1412, 13ax-mp 7 . . . . . 6  |-  ( ( ( F  |`  A )  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( ( F  |`  A ) " ( A  \  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( ( F  |`  A ) " ( A  \  B ) ) )
1512rneqi 4562 . . . . . . . 8  |-  ran  (
( F  |`  A )  |`  ( A  \  B
) )  =  ran  ( F  |`  ( A 
\  B ) )
16 df-ima 4358 . . . . . . . 8  |-  ( ( F  |`  A ) " ( A  \  B ) )  =  ran  ( ( F  |`  A )  |`  ( A  \  B ) )
17 df-ima 4358 . . . . . . . 8  |-  ( F
" ( A  \  B ) )  =  ran  ( F  |`  ( A  \  B ) )
1815, 16, 173eqtr4i 2070 . . . . . . 7  |-  ( ( F  |`  A ) " ( A  \  B ) )  =  ( F " ( A  \  B ) )
19 foeq3 5104 . . . . . . 7  |-  ( ( ( F  |`  A )
" ( A  \  B ) )  =  ( F " ( A  \  B ) )  ->  ( ( F  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( ( F  |`  A ) " ( A  \  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( F
" ( A  \  B ) ) ) )
2018, 19ax-mp 7 . . . . . 6  |-  ( ( F  |`  ( A  \  B ) ) : ( A  \  B
) -onto-> ( ( F  |`  A ) " ( A  \  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( F
" ( A  \  B ) ) )
2114, 20bitri 173 . . . . 5  |-  ( ( ( F  |`  A )  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( ( F  |`  A ) " ( A  \  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( F
" ( A  \  B ) ) )
228, 21sylib 127 . . . 4  |-  ( ( F  |`  A ) : A -onto-> C  ->  ( F  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( F " ( A  \  B ) ) )
23 funres11 4971 . . . 4  |-  ( Fun  `' F  ->  Fun  `' ( F  |`  ( A 
\  B ) ) )
24 dff1o3 5132 . . . . 5  |-  ( ( F  |`  ( A  \  B ) ) : ( A  \  B
)
-1-1-onto-> ( F " ( A 
\  B ) )  <-> 
( ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -onto-> ( F " ( A 
\  B ) )  /\  Fun  `' ( F  |`  ( A  \  B ) ) ) )
2524biimpri 124 . . . 4  |-  ( ( ( F  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( F
" ( A  \  B ) )  /\  Fun  `' ( F  |`  ( A  \  B ) ) )  ->  ( F  |`  ( A  \  B ) ) : ( A  \  B
)
-1-1-onto-> ( F " ( A 
\  B ) ) )
2622, 23, 25syl2anr 274 . . 3  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C )  ->  ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -1-1-onto-> ( F
" ( A  \  B ) ) )
27263adant3 924 . 2  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -1-1-onto-> ( F
" ( A  \  B ) ) )
28 df-ima 4358 . . . . . . 7  |-  ( F
" A )  =  ran  ( F  |`  A )
29 forn 5109 . . . . . . 7  |-  ( ( F  |`  A ) : A -onto-> C  ->  ran  ( F  |`  A )  =  C )
3028, 29syl5eq 2084 . . . . . 6  |-  ( ( F  |`  A ) : A -onto-> C  ->  ( F
" A )  =  C )
31 df-ima 4358 . . . . . . 7  |-  ( F
" B )  =  ran  ( F  |`  B )
32 forn 5109 . . . . . . 7  |-  ( ( F  |`  B ) : B -onto-> D  ->  ran  ( F  |`  B )  =  D )
3331, 32syl5eq 2084 . . . . . 6  |-  ( ( F  |`  B ) : B -onto-> D  ->  ( F
" B )  =  D )
3430, 33anim12i 321 . . . . 5  |-  ( ( ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( ( F
" A )  =  C  /\  ( F
" B )  =  D ) )
35 imadif 4979 . . . . . 6  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  =  ( ( F " A )  \  ( F " B ) ) )
36 difeq12 3057 . . . . . 6  |-  ( ( ( F " A
)  =  C  /\  ( F " B )  =  D )  -> 
( ( F " A )  \  ( F " B ) )  =  ( C  \  D ) )
3735, 36sylan9eq 2092 . . . . 5  |-  ( ( Fun  `' F  /\  ( ( F " A )  =  C  /\  ( F " B )  =  D ) )  ->  ( F " ( A  \  B ) )  =  ( C  \  D
) )
3834, 37sylan2 270 . . . 4  |-  ( ( Fun  `' F  /\  ( ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D ) )  -> 
( F " ( A  \  B ) )  =  ( C  \  D ) )
39383impb 1100 . . 3  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( F "
( A  \  B
) )  =  ( C  \  D ) )
40 f1oeq3 5119 . . 3  |-  ( ( F " ( A 
\  B ) )  =  ( C  \  D )  ->  (
( F  |`  ( A  \  B ) ) : ( A  \  B ) -1-1-onto-> ( F " ( A  \  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -1-1-onto-> ( C  \  D
) ) )
4139, 40syl 14 . 2  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( ( F  |`  ( A  \  B
) ) : ( A  \  B ) -1-1-onto-> ( F " ( A 
\  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -1-1-onto-> ( C  \  D
) ) )
4227, 41mpbid 135 1  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -1-1-onto-> ( C 
\  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    \ cdif 2914    i^i cin 2916    C_ wss 2917   `'ccnv 4344   dom cdm 4345   ran crn 4346    |` cres 4347   "cima 4348   Fun wfun 4896   -->wf 4898   -onto->wfo 4900   -1-1-onto->wf1o 4901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909
This theorem is referenced by:  dif1en  6337
  Copyright terms: Public domain W3C validator