ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunopab Unicode version

Theorem iunopab 4018
Description: Move indexed union inside an ordered-pair abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Assertion
Ref Expression
iunopab  |-  U_ z  e.  A  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  E. z  e.  A  ph }
Distinct variable groups:    x, A    y, A    y, z    x, z
Allowed substitution hints:    ph( x, y, z)    A( z)

Proof of Theorem iunopab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elopab 3995 . . . . 5  |-  ( w  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) )
21rexbii 2331 . . . 4  |-  ( E. z  e.  A  w  e.  { <. x ,  y >.  |  ph } 
<->  E. z  e.  A  E. x E. y ( w  =  <. x ,  y >.  /\  ph ) )
3 rexcom4 2577 . . . . 5  |-  ( E. z  e.  A  E. x E. y ( w  =  <. x ,  y
>.  /\  ph )  <->  E. x E. z  e.  A  E. y ( w  = 
<. x ,  y >.  /\  ph ) )
4 rexcom4 2577 . . . . . . 7  |-  ( E. z  e.  A  E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. y E. z  e.  A  ( w  =  <. x ,  y >.  /\  ph ) )
5 r19.42v 2467 . . . . . . . 8  |-  ( E. z  e.  A  ( w  =  <. x ,  y >.  /\  ph ) 
<->  ( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
65exbii 1496 . . . . . . 7  |-  ( E. y E. z  e.  A  ( w  = 
<. x ,  y >.  /\  ph )  <->  E. y
( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
74, 6bitri 173 . . . . . 6  |-  ( E. z  e.  A  E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. y
( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
87exbii 1496 . . . . 5  |-  ( E. x E. z  e.  A  E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  E. x E. y
( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
93, 8bitri 173 . . . 4  |-  ( E. z  e.  A  E. x E. y ( w  =  <. x ,  y
>.  /\  ph )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  E. z  e.  A  ph ) )
102, 9bitri 173 . . 3  |-  ( E. z  e.  A  w  e.  { <. x ,  y >.  |  ph } 
<->  E. x E. y
( w  =  <. x ,  y >.  /\  E. z  e.  A  ph )
)
1110abbii 2153 . 2  |-  { w  |  E. z  e.  A  w  e.  { <. x ,  y >.  |  ph } }  =  {
w  |  E. x E. y ( w  = 
<. x ,  y >.  /\  E. z  e.  A  ph ) }
12 df-iun 3659 . 2  |-  U_ z  e.  A  { <. x ,  y >.  |  ph }  =  { w  |  E. z  e.  A  w  e.  { <. x ,  y >.  |  ph } }
13 df-opab 3819 . 2  |-  { <. x ,  y >.  |  E. z  e.  A  ph }  =  { w  |  E. x E. y ( w  =  <. x ,  y
>.  /\  E. z  e.  A  ph ) }
1411, 12, 133eqtr4i 2070 1  |-  U_ z  e.  A  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  E. z  e.  A  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 97    = wceq 1243   E.wex 1381    e. wcel 1393   {cab 2026   E.wrex 2307   <.cop 3378   U_ciun 3657   {copab 3817
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-iun 3659  df-opab 3819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator