ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ordpr Unicode version

Theorem 2ordpr 4249
Description: Version of 2on 6009 with the definition of  2o expanded and expressed in terms of  Ord. (Contributed by Jim Kingdon, 29-Aug-2021.)
Assertion
Ref Expression
2ordpr  |-  Ord  { (/)
,  { (/) } }

Proof of Theorem 2ordpr
StepHypRef Expression
1 ord0 4128 . . 3  |-  Ord  (/)
2 ordsucim 4226 . . 3  |-  ( Ord  (/)  ->  Ord  suc  (/) )
3 ordsucim 4226 . . 3  |-  ( Ord 
suc  (/)  ->  Ord  suc  suc  (/) )
41, 2, 3mp2b 8 . 2  |-  Ord  suc  suc  (/)
5 df-suc 4108 . . . 4  |-  suc  { (/)
}  =  ( {
(/) }  u.  { { (/)
} } )
6 suc0 4148 . . . . 5  |-  suc  (/)  =  { (/)
}
7 suceq 4139 . . . . 5  |-  ( suc  (/)  =  { (/) }  ->  suc 
suc  (/)  =  suc  { (/)
} )
86, 7ax-mp 7 . . . 4  |-  suc  suc  (/)  =  suc  { (/) }
9 df-pr 3382 . . . 4  |-  { (/) ,  { (/) } }  =  ( { (/) }  u.  { { (/) } } )
105, 8, 93eqtr4i 2070 . . 3  |-  suc  suc  (/)  =  { (/) ,  { (/)
} }
11 ordeq 4109 . . 3  |-  ( suc 
suc  (/)  =  { (/) ,  { (/) } }  ->  ( Ord  suc  suc  (/)  <->  Ord  { (/) ,  { (/) } } ) )
1210, 11ax-mp 7 . 2  |-  ( Ord 
suc  suc  (/)  <->  Ord  { (/) ,  { (/)
} } )
134, 12mpbi 133 1  |-  Ord  { (/)
,  { (/) } }
Colors of variables: wff set class
Syntax hints:    <-> wb 98    = wceq 1243    u. cun 2915   (/)c0 3224   {csn 3375   {cpr 3376   Ord word 4099   suc csuc 4102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-uni 3581  df-tr 3855  df-iord 4103  df-suc 4108
This theorem is referenced by:  ontr2exmid  4250  ordtri2or2exmidlem  4251  onsucelsucexmidlem  4254
  Copyright terms: Public domain W3C validator