ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabxp Unicode version

Theorem rabxp 4380
Description: Membership in a class builder restricted to a cross product. (Contributed by NM, 20-Feb-2014.)
Hypothesis
Ref Expression
rabxp.1  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
rabxp  |-  { x  e.  ( A  X.  B
)  |  ph }  =  { <. y ,  z
>.  |  ( y  e.  A  /\  z  e.  B  /\  ps ) }
Distinct variable groups:    x, y, z, A    x, B, y, z    ph, y, z    ps, x
Allowed substitution hints:    ph( x)    ps( y,
z)

Proof of Theorem rabxp
StepHypRef Expression
1 elxp 4362 . . . . 5  |-  ( x  e.  ( A  X.  B )  <->  E. y E. z ( x  = 
<. y ,  z >.  /\  ( y  e.  A  /\  z  e.  B
) ) )
21anbi1i 431 . . . 4  |-  ( ( x  e.  ( A  X.  B )  /\  ph )  <->  ( E. y E. z ( x  = 
<. y ,  z >.  /\  ( y  e.  A  /\  z  e.  B
) )  /\  ph ) )
3 19.41vv 1783 . . . 4  |-  ( E. y E. z ( ( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B )
)  /\  ph )  <->  ( E. y E. z ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  /\  ph ) )
4 anass 381 . . . . . 6  |-  ( ( ( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B )
)  /\  ph )  <->  ( x  =  <. y ,  z
>.  /\  ( ( y  e.  A  /\  z  e.  B )  /\  ph ) ) )
5 rabxp.1 . . . . . . . . 9  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
65anbi2d 437 . . . . . . . 8  |-  ( x  =  <. y ,  z
>.  ->  ( ( ( y  e.  A  /\  z  e.  B )  /\  ph )  <->  ( (
y  e.  A  /\  z  e.  B )  /\  ps ) ) )
7 df-3an 887 . . . . . . . 8  |-  ( ( y  e.  A  /\  z  e.  B  /\  ps )  <->  ( ( y  e.  A  /\  z  e.  B )  /\  ps ) )
86, 7syl6bbr 187 . . . . . . 7  |-  ( x  =  <. y ,  z
>.  ->  ( ( ( y  e.  A  /\  z  e.  B )  /\  ph )  <->  ( y  e.  A  /\  z  e.  B  /\  ps )
) )
98pm5.32i 427 . . . . . 6  |-  ( ( x  =  <. y ,  z >.  /\  (
( y  e.  A  /\  z  e.  B
)  /\  ph ) )  <-> 
( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B  /\  ps ) ) )
104, 9bitri 173 . . . . 5  |-  ( ( ( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B )
)  /\  ph )  <->  ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B  /\  ps )
) )
11102exbii 1497 . . . 4  |-  ( E. y E. z ( ( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B )
)  /\  ph )  <->  E. y E. z ( x  = 
<. y ,  z >.  /\  ( y  e.  A  /\  z  e.  B  /\  ps ) ) )
122, 3, 113bitr2i 197 . . 3  |-  ( ( x  e.  ( A  X.  B )  /\  ph )  <->  E. y E. z
( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B  /\  ps ) ) )
1312abbii 2153 . 2  |-  { x  |  ( x  e.  ( A  X.  B
)  /\  ph ) }  =  { x  |  E. y E. z
( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B  /\  ps ) ) }
14 df-rab 2315 . 2  |-  { x  e.  ( A  X.  B
)  |  ph }  =  { x  |  ( x  e.  ( A  X.  B )  /\  ph ) }
15 df-opab 3819 . 2  |-  { <. y ,  z >.  |  ( y  e.  A  /\  z  e.  B  /\  ps ) }  =  {
x  |  E. y E. z ( x  = 
<. y ,  z >.  /\  ( y  e.  A  /\  z  e.  B  /\  ps ) ) }
1613, 14, 153eqtr4i 2070 1  |-  { x  e.  ( A  X.  B
)  |  ph }  =  { <. y ,  z
>.  |  ( y  e.  A  /\  z  e.  B  /\  ps ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243   E.wex 1381    e. wcel 1393   {cab 2026   {crab 2310   <.cop 3378   {copab 3817    X. cxp 4343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rab 2315  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-opab 3819  df-xp 4351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator