Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnul2 Structured version   Unicode version

Theorem dfnul2 3203
 Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.)
Assertion
Ref Expression
dfnul2

Proof of Theorem dfnul2
StepHypRef Expression
1 df-nul 3202 . . . 4
21eleq2i 2086 . . 3
3 eldif 2904 . . 3
4 pm3.24 614 . . . 4
5 eqid 2022 . . . . 5
65notnoti 561 . . . 4
74, 62false 604 . . 3
82, 3, 73bitri 195 . 2
98abbi2i 2134 1
 Colors of variables: wff set class Syntax hints:   wn 3   wa 97   wceq 1228   wcel 1374  cab 2008  cvv 2535   cdif 2891  c0 3201 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004 This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-v 2537  df-dif 2897  df-nul 3202 This theorem is referenced by:  dfnul3  3204  rab0  3223  iotanul  4809
 Copyright terms: Public domain W3C validator