ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.24 Structured version   Unicode version

Theorem pm3.24 626
Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 2-Feb-2015.)
Assertion
Ref Expression
pm3.24

Proof of Theorem pm3.24
StepHypRef Expression
1 notnot1 559 . 2
2 imnan 623 . 2
31, 2mpbi 133 1
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  pm4.43  855  excxor  1268  nonconne  2212  pssirr  3038  sspssn  3042  dfnul2  3220  dfnul3  3221  rabnc  3244  axnul  3873  nnexmid  9214
  Copyright terms: Public domain W3C validator