Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnul2 Structured version   GIF version

Theorem dfnul2 3220
 Description: Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.)
Assertion
Ref Expression
dfnul2 ∅ = {x ∣ ¬ x = x}

Proof of Theorem dfnul2
StepHypRef Expression
1 df-nul 3219 . . . 4 ∅ = (V ∖ V)
21eleq2i 2101 . . 3 (x ∅ ↔ x (V ∖ V))
3 eldif 2921 . . 3 (x (V ∖ V) ↔ (x V ¬ x V))
4 pm3.24 626 . . . 4 ¬ (x V ¬ x V)
5 eqid 2037 . . . . 5 x = x
65notnoti 573 . . . 4 ¬ ¬ x = x
74, 62false 616 . . 3 ((x V ¬ x V) ↔ ¬ x = x)
82, 3, 73bitri 195 . 2 (x ∅ ↔ ¬ x = x)
98abbi2i 2149 1 ∅ = {x ∣ ¬ x = x}
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   ∧ wa 97   = wceq 1242   ∈ wcel 1390  {cab 2023  Vcvv 2551   ∖ cdif 2908  ∅c0 3218 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-dif 2914  df-nul 3219 This theorem is referenced by:  dfnul3  3221  rab0  3240  iotanul  4824
 Copyright terms: Public domain W3C validator