![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > noel | Unicode version |
Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
noel |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3066 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eldifn 3067 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | pm2.65i 568 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | df-nul 3225 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | eleq2i 2104 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | mtbir 596 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-dif 2920 df-nul 3225 |
This theorem is referenced by: n0i 3229 n0rf 3233 rex0 3238 eq0 3239 abvor0dc 3242 rab0 3246 un0 3251 in0 3252 0ss 3255 disj 3268 ral0 3322 int0 3629 iun0 3713 0iun 3714 nlim0 4131 nsuceq0g 4155 ordtriexmidlem 4245 ordtriexmidlem2 4246 ordtriexmid 4247 ordtri2or2exmidlem 4251 onsucelsucexmidlem 4254 reg2exmidlema 4259 reg3exmidlemwe 4303 nn0eln0 4341 0xp 4420 dm0 4549 dm0rn0 4552 reldm0 4553 cnv0 4727 co02 4834 0fv 5208 acexmidlema 5503 acexmidlemb 5504 acexmidlemab 5506 mpt20 5574 nnsucelsuc 6070 nnmordi 6089 nnaordex 6100 0er 6140 elni2 6412 nlt1pig 6439 0npr 6581 fzm1 8962 frec2uzltd 9189 bdcnul 9985 bj-nnelirr 10078 |
Copyright terms: Public domain | W3C validator |