Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfif6 Unicode version

Theorem dfif6 3333
 Description: An alternate definition of the conditional operator df-if 3332 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
dfif6
Distinct variable groups:   ,   ,   ,

Proof of Theorem dfif6
StepHypRef Expression
1 unab 3204 . 2
2 df-rab 2315 . . 3
3 df-rab 2315 . . 3
42, 3uneq12i 3095 . 2
5 df-if 3332 . 2
61, 4, 53eqtr4ri 2071 1
 Colors of variables: wff set class Syntax hints:   wn 3   wa 97   wo 629   wceq 1243   wcel 1393  cab 2026  crab 2310   cun 2915  cif 3331 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rab 2315  df-v 2559  df-un 2922  df-if 3332 This theorem is referenced by:  ifeq1  3334  ifeq2  3335  dfif3  3343
 Copyright terms: Public domain W3C validator