Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabn0r Unicode version

Theorem rabn0r 3244
 Description: Non-empty restricted class abstraction. (Contributed by Jim Kingdon, 1-Aug-2018.)
Assertion
Ref Expression
rabn0r

Proof of Theorem rabn0r
StepHypRef Expression
1 abn0r 3243 . 2
2 df-rex 2312 . 2
3 df-rab 2315 . . 3
43neeq1i 2220 . 2
51, 2, 43imtr4i 190 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97  wex 1381   wcel 1393  cab 2026   wne 2204  wrex 2307  crab 2310  c0 3224 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-nul 3225 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator