ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intexrabim Unicode version

Theorem intexrabim 3907
Description: The intersection of an inhabited restricted class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intexrabim  |-  ( E. x  e.  A  ph  ->  |^| { x  e.  A  |  ph }  e.  _V )

Proof of Theorem intexrabim
StepHypRef Expression
1 intexabim 3906 . 2  |-  ( E. x ( x  e.  A  /\  ph )  ->  |^| { x  |  ( x  e.  A  /\  ph ) }  e.  _V )
2 df-rex 2312 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
3 df-rab 2315 . . . 4  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
43inteqi 3619 . . 3  |-  |^| { x  e.  A  |  ph }  =  |^| { x  |  ( x  e.  A  /\  ph ) }
54eleq1i 2103 . 2  |-  ( |^| { x  e.  A  |  ph }  e.  _V  <->  |^| { x  |  ( x  e.  A  /\  ph ) }  e.  _V )
61, 2, 53imtr4i 190 1  |-  ( E. x  e.  A  ph  ->  |^| { x  e.  A  |  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97   E.wex 1381    e. wcel 1393   {cab 2026   E.wrex 2307   {crab 2310   _Vcvv 2557   |^|cint 3615
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-in 2924  df-ss 2931  df-int 3616
This theorem is referenced by:  cardcl  6361  isnumi  6362  cardval3ex  6365
  Copyright terms: Public domain W3C validator