ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intexabim Unicode version

Theorem intexabim 3906
Description: The intersection of an inhabited class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intexabim  |-  ( E. x ph  ->  |^| { x  |  ph }  e.  _V )

Proof of Theorem intexabim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 abid 2028 . . 3  |-  ( x  e.  { x  | 
ph }  <->  ph )
21exbii 1496 . 2  |-  ( E. x  x  e.  {
x  |  ph }  <->  E. x ph )
3 nfsab1 2030 . . . 4  |-  F/ x  y  e.  { x  |  ph }
4 nfv 1421 . . . 4  |-  F/ y  x  e.  { x  |  ph }
5 eleq1 2100 . . . 4  |-  ( y  =  x  ->  (
y  e.  { x  |  ph }  <->  x  e.  { x  |  ph }
) )
63, 4, 5cbvex 1639 . . 3  |-  ( E. y  y  e.  {
x  |  ph }  <->  E. x  x  e.  {
x  |  ph }
)
7 inteximm 3903 . . 3  |-  ( E. y  y  e.  {
x  |  ph }  ->  |^| { x  | 
ph }  e.  _V )
86, 7sylbir 125 . 2  |-  ( E. x  x  e.  {
x  |  ph }  ->  |^| { x  | 
ph }  e.  _V )
92, 8sylbir 125 1  |-  ( E. x ph  ->  |^| { x  |  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1381    e. wcel 1393   {cab 2026   _Vcvv 2557   |^|cint 3615
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-in 2924  df-ss 2931  df-int 3616
This theorem is referenced by:  intexrabim  3907  omex  4316
  Copyright terms: Public domain W3C validator