ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnumi Unicode version

Theorem isnumi 6362
Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
isnumi  |-  ( ( A  e.  On  /\  A  ~~  B )  ->  B  e.  dom  card )

Proof of Theorem isnumi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3767 . . . . 5  |-  ( y  =  A  ->  (
y  ~~  B  <->  A  ~~  B ) )
21rspcev 2656 . . . 4  |-  ( ( A  e.  On  /\  A  ~~  B )  ->  E. y  e.  On  y  ~~  B )
3 intexrabim 3907 . . . 4  |-  ( E. y  e.  On  y  ~~  B  ->  |^| { y  e.  On  |  y 
~~  B }  e.  _V )
42, 3syl 14 . . 3  |-  ( ( A  e.  On  /\  A  ~~  B )  ->  |^| { y  e.  On  |  y  ~~  B }  e.  _V )
5 encv 6227 . . . . . 6  |-  ( A 
~~  B  ->  ( A  e.  _V  /\  B  e.  _V ) )
65simprd 107 . . . . 5  |-  ( A 
~~  B  ->  B  e.  _V )
7 breq2 3768 . . . . . . . . 9  |-  ( x  =  B  ->  (
y  ~~  x  <->  y  ~~  B ) )
87rabbidv 2549 . . . . . . . 8  |-  ( x  =  B  ->  { y  e.  On  |  y 
~~  x }  =  { y  e.  On  |  y  ~~  B }
)
98inteqd 3620 . . . . . . 7  |-  ( x  =  B  ->  |^| { y  e.  On  |  y 
~~  x }  =  |^| { y  e.  On  |  y  ~~  B }
)
109eleq1d 2106 . . . . . 6  |-  ( x  =  B  ->  ( |^| { y  e.  On  |  y  ~~  x }  e.  _V  <->  |^| { y  e.  On  |  y  ~~  B }  e.  _V ) )
1110elrab3 2699 . . . . 5  |-  ( B  e.  _V  ->  ( B  e.  { x  e.  _V  |  |^| { y  e.  On  |  y 
~~  x }  e.  _V }  <->  |^| { y  e.  On  |  y  ~~  B }  e.  _V ) )
126, 11syl 14 . . . 4  |-  ( A 
~~  B  ->  ( B  e.  { x  e.  _V  |  |^| { y  e.  On  |  y 
~~  x }  e.  _V }  <->  |^| { y  e.  On  |  y  ~~  B }  e.  _V ) )
1312adantl 262 . . 3  |-  ( ( A  e.  On  /\  A  ~~  B )  -> 
( B  e.  {
x  e.  _V  |  |^| { y  e.  On  |  y  ~~  x }  e.  _V }  <->  |^| { y  e.  On  |  y 
~~  B }  e.  _V ) )
144, 13mpbird 156 . 2  |-  ( ( A  e.  On  /\  A  ~~  B )  ->  B  e.  { x  e.  _V  |  |^| { y  e.  On  |  y 
~~  x }  e.  _V } )
15 df-card 6360 . . 3  |-  card  =  ( x  e.  _V  |->  |^|
{ y  e.  On  |  y  ~~  x }
)
1615dmmpt 4816 . 2  |-  dom  card  =  { x  e.  _V  |  |^| { y  e.  On  |  y  ~~  x }  e.  _V }
1714, 16syl6eleqr 2131 1  |-  ( ( A  e.  On  /\  A  ~~  B )  ->  B  e.  dom  card )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   E.wrex 2307   {crab 2310   _Vcvv 2557   |^|cint 3615   class class class wbr 3764   Oncon0 4100   dom cdm 4345    ~~ cen 6219   cardccrd 6359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-int 3616  df-br 3765  df-opab 3819  df-mpt 3820  df-xp 4351  df-rel 4352  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-en 6222  df-card 6360
This theorem is referenced by:  finnum  6363  onenon  6364
  Copyright terms: Public domain W3C validator