ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintrab Unicode version

Theorem elintrab 3627
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.)
Hypothesis
Ref Expression
inteqab.1  |-  A  e. 
_V
Assertion
Ref Expression
elintrab  |-  ( A  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  e.  x
) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem elintrab
StepHypRef Expression
1 inteqab.1 . . . 4  |-  A  e. 
_V
21elintab 3626 . . 3  |-  ( A  e.  |^| { x  |  ( x  e.  B  /\  ph ) }  <->  A. x
( ( x  e.  B  /\  ph )  ->  A  e.  x ) )
3 impexp 250 . . . 4  |-  ( ( ( x  e.  B  /\  ph )  ->  A  e.  x )  <->  ( x  e.  B  ->  ( ph  ->  A  e.  x ) ) )
43albii 1359 . . 3  |-  ( A. x ( ( x  e.  B  /\  ph )  ->  A  e.  x
)  <->  A. x ( x  e.  B  ->  ( ph  ->  A  e.  x
) ) )
52, 4bitri 173 . 2  |-  ( A  e.  |^| { x  |  ( x  e.  B  /\  ph ) }  <->  A. x
( x  e.  B  ->  ( ph  ->  A  e.  x ) ) )
6 df-rab 2315 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
76inteqi 3619 . . 3  |-  |^| { x  e.  B  |  ph }  =  |^| { x  |  ( x  e.  B  /\  ph ) }
87eleq2i 2104 . 2  |-  ( A  e.  |^| { x  e.  B  |  ph }  <->  A  e.  |^| { x  |  ( x  e.  B  /\  ph ) } )
9 df-ral 2311 . 2  |-  ( A. x  e.  B  ( ph  ->  A  e.  x
)  <->  A. x ( x  e.  B  ->  ( ph  ->  A  e.  x
) ) )
105, 8, 93bitr4i 201 1  |-  ( A  e.  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  e.  x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   A.wal 1241    e. wcel 1393   {cab 2026   A.wral 2306   {crab 2310   _Vcvv 2557   |^|cint 3615
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rab 2315  df-v 2559  df-int 3616
This theorem is referenced by:  elintrabg  3628  intmin  3635  bj-indint  10055
  Copyright terms: Public domain W3C validator