Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elintab | Unicode version |
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
inteqab.1 |
Ref | Expression |
---|---|
elintab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqab.1 | . . 3 | |
2 | 1 | elint 3621 | . 2 |
3 | nfsab1 2030 | . . . 4 | |
4 | nfv 1421 | . . . 4 | |
5 | 3, 4 | nfim 1464 | . . 3 |
6 | nfv 1421 | . . 3 | |
7 | eleq1 2100 | . . . . 5 | |
8 | abid 2028 | . . . . 5 | |
9 | 7, 8 | syl6bb 185 | . . . 4 |
10 | eleq2 2101 | . . . 4 | |
11 | 9, 10 | imbi12d 223 | . . 3 |
12 | 5, 6, 11 | cbval 1637 | . 2 |
13 | 2, 12 | bitri 173 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wal 1241 wcel 1393 cab 2026 cvv 2557 cint 3615 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-int 3616 |
This theorem is referenced by: elintrab 3627 intmin4 3643 intab 3644 intid 3960 |
Copyright terms: Public domain | W3C validator |