Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indint Unicode version

Theorem bj-indint 9390
Description: The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indint Ind  |^| {  | Ind  }
Distinct variable group:   ,

Proof of Theorem bj-indint
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-bj-ind 9386 . . . . 5 Ind  (/)  suc
21simplbi 259 . . . 4 Ind 
(/)
32rgenw 2370 . . 3 Ind  (/)
4 0ex 3875 . . . 4  (/)  _V
54elintrab 3618 . . 3  (/)  |^| {  | Ind  } Ind  (/)
63, 5mpbir 134 . 2  (/)  |^| {  | Ind  }
7 bj-indsuc 9387 . . . . . 6 Ind  suc
87a2i 11 . . . . 5 Ind Ind 
suc
98ralimi 2378 . . . 4 Ind Ind 
suc
10 vex 2554 . . . . 5 
_V
1110elintrab 3618 . . . 4  |^| {  | Ind  } Ind
1210bj-sucex 9378 . . . . 5  suc  _V
1312elintrab 3618 . . . 4  suc  |^| {  | Ind  } Ind  suc
149, 11, 133imtr4i 190 . . 3  |^| {  | Ind  }  suc  |^| {  | Ind  }
1514rgen 2368 . 2  |^| {  | Ind  } suc  |^| {  | Ind  }
16 df-bj-ind 9386 . 2 Ind  |^| {  | Ind  }  (/)  |^| {  | Ind  }  |^| {  | Ind  } suc  |^| {  | Ind  }
176, 15, 16mpbir2an 848 1 Ind  |^| {  | Ind  }
Colors of variables: wff set class
Syntax hints:   wi 4   wcel 1390  wral 2300   {crab 2304   (/)c0 3218   |^|cint 3606   suc csuc 4068  Ind wind 9385
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-nul 3874  ax-pr 3935  ax-un 4136  ax-bd0 9268  ax-bdor 9271  ax-bdex 9274  ax-bdeq 9275  ax-bdel 9276  ax-bdsb 9277  ax-bdsep 9339
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-rab 2309  df-v 2553  df-dif 2914  df-un 2916  df-nul 3219  df-sn 3373  df-pr 3374  df-uni 3572  df-int 3607  df-suc 4074  df-bdc 9296  df-bj-ind 9386
This theorem is referenced by:  bj-omind  9393
  Copyright terms: Public domain W3C validator