![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rgenw | Unicode version |
Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rgenw.1 |
![]() ![]() |
Ref | Expression |
---|---|
rgenw |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgenw.1 |
. . 3
![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | rgen 2374 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-gen 1338 |
This theorem depends on definitions: df-bi 110 df-ral 2311 |
This theorem is referenced by: rgen2w 2377 reuun1 3219 0disj 3761 iinexgm 3908 epse 4079 xpiindim 4473 eliunxp 4475 opeliunxp2 4476 elrnmpti 4587 fnmpti 5027 mpt2eq12 5565 iunex 5750 mpt2ex 5836 nneneq 6320 nqprrnd 6641 nqprdisj 6642 uzf 8476 bj-indint 10055 bj-nn0suc0 10075 bj-nntrans 10076 |
Copyright terms: Public domain | W3C validator |