Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuun1 Unicode version

Theorem reuun1 3219
 Description: Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.)
Assertion
Ref Expression
reuun1
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem reuun1
StepHypRef Expression
1 ssun1 3106 . 2
2 orc 633 . . 3
32rgenw 2376 . 2
4 reuss2 3217 . 2
51, 3, 4mpanl12 412 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wo 629  wral 2306  wrex 2307  wreu 2308   cun 2915   wss 2917 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-v 2559  df-un 2922  df-in 2924  df-ss 2931 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator