ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuun2 Unicode version

Theorem reuun2 3214
Description: Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.)
Assertion
Ref Expression
reuun2  u.
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem reuun2
StepHypRef Expression
1 df-rex 2306 . . 3
2 euor2 1955 . . 3
31, 2sylnbi 602 . 2
4 df-reu 2307 . . 3  u.  u.
5 elun 3078 . . . . . 6  u.
65anbi1i 431 . . . . 5  u.
7 andir 731 . . . . . 6
8 orcom 646 . . . . . 6
97, 8bitri 173 . . . . 5
106, 9bitri 173 . . . 4  u.
1110eubii 1906 . . 3  u.
124, 11bitri 173 . 2  u.
13 df-reu 2307 . 2
143, 12, 133bitr4g 212 1  u.
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wa 97   wb 98   wo 628  wex 1378   wcel 1390  weu 1897  wrex 2301  wreu 2302    u. cun 2909
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-eu 1900  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-rex 2306  df-reu 2307  df-v 2553  df-un 2916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator