Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  ax-bdsep Structured version   Unicode version

Axiom ax-bdsep 7303
Description: Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 3845. (Contributed by BJ, 5-Oct-2019.)
Hypothesis
Ref Expression
ax-bdsep.1 BOUNDED
Assertion
Ref Expression
ax-bdsep  a b  b  a
Distinct variable groups:    a, b,   , a, b
Allowed substitution hint:   ()

Detailed syntax breakdown of Axiom ax-bdsep
StepHypRef Expression
1 vx . . . . . 6  setvar
2 vb . . . . . 6  setvar  b
31, 2wel 1371 . . . . 5  b
4 va . . . . . . 7  setvar  a
51, 4wel 1371 . . . . . 6  a
6 wph . . . . . 6
75, 6wa 97 . . . . 5  a
83, 7wb 98 . . . 4  b  a
98, 1wal 1224 . . 3  b  a
109, 2wex 1358 . 2  b  b  a
1110, 4wal 1224 1  a b  b  a
Colors of variables: wff set class
This axiom is referenced by:  bdsep2  7304
  Copyright terms: Public domain W3C validator