Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reubidva | Unicode version |
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 13-Nov-2004.) |
Ref | Expression |
---|---|
reubidva.1 |
Ref | Expression |
---|---|
reubidva |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1421 | . 2 | |
2 | reubidva.1 | . 2 | |
3 | 1, 2 | reubida 2491 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wcel 1393 wreu 2308 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-eu 1903 df-reu 2313 |
This theorem is referenced by: reubidv 2493 f1ofveu 5500 srpospr 6867 icoshftf1o 8859 |
Copyright terms: Public domain | W3C validator |