ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relssres Unicode version

Theorem relssres 4648
Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
relssres  |-  ( ( Rel  A  /\  dom  A 
C_  B )  -> 
( A  |`  B )  =  A )

Proof of Theorem relssres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 102 . . . 4  |-  ( ( Rel  A  /\  dom  A 
C_  B )  ->  Rel  A )
2 vex 2560 . . . . . . . . 9  |-  x  e. 
_V
3 vex 2560 . . . . . . . . 9  |-  y  e. 
_V
42, 3opeldm 4538 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
5 ssel 2939 . . . . . . . 8  |-  ( dom 
A  C_  B  ->  ( x  e.  dom  A  ->  x  e.  B ) )
64, 5syl5 28 . . . . . . 7  |-  ( dom 
A  C_  B  ->  (
<. x ,  y >.  e.  A  ->  x  e.  B ) )
76ancld 308 . . . . . 6  |-  ( dom 
A  C_  B  ->  (
<. x ,  y >.  e.  A  ->  ( <.
x ,  y >.  e.  A  /\  x  e.  B ) ) )
83opelres 4617 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( A  |`  B )  <-> 
( <. x ,  y
>.  e.  A  /\  x  e.  B ) )
97, 8syl6ibr 151 . . . . 5  |-  ( dom 
A  C_  B  ->  (
<. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  ( A  |`  B )
) )
109adantl 262 . . . 4  |-  ( ( Rel  A  /\  dom  A 
C_  B )  -> 
( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  ( A  |`  B )
) )
111, 10relssdv 4432 . . 3  |-  ( ( Rel  A  /\  dom  A 
C_  B )  ->  A  C_  ( A  |`  B ) )
12 resss 4635 . . 3  |-  ( A  |`  B )  C_  A
1311, 12jctil 295 . 2  |-  ( ( Rel  A  /\  dom  A 
C_  B )  -> 
( ( A  |`  B )  C_  A  /\  A  C_  ( A  |`  B ) ) )
14 eqss 2960 . 2  |-  ( ( A  |`  B )  =  A  <->  ( ( A  |`  B )  C_  A  /\  A  C_  ( A  |`  B ) ) )
1513, 14sylibr 137 1  |-  ( ( Rel  A  /\  dom  A 
C_  B )  -> 
( A  |`  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393    C_ wss 2917   <.cop 3378   dom cdm 4345    |` cres 4347   Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-dm 4355  df-res 4357
This theorem is referenced by:  resdm  4649  resid  4662  fnresdm  5008  f1ompt  5320
  Copyright terms: Public domain W3C validator