ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq1d Structured version   Unicode version

Theorem mpteq1d 3833
Description: An equality theorem for the maps to notation. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
mpteq1d.1
Assertion
Ref Expression
mpteq1d  |->  C  |->  C
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()    C()

Proof of Theorem mpteq1d
StepHypRef Expression
1 mpteq1d.1 . 2
2 mpteq1 3832 . 2  |->  C  |->  C
31, 2syl 14 1  |->  C  |->  C
Colors of variables: wff set class
Syntax hints:   wi 4   wceq 1242    |-> cmpt 3809
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-ral 2305  df-opab 3810  df-mpt 3811
This theorem is referenced by:  fmptapd  5297  offval  5661
  Copyright terms: Public domain W3C validator