ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbexa Unicode version

Theorem csbexa 3886
Description: The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
csbexa.1  |-  A  e. 
_V
csbexa.2  |-  B  e. 
_V
Assertion
Ref Expression
csbexa  |-  [_ A  /  x ]_ B  e. 
_V

Proof of Theorem csbexa
StepHypRef Expression
1 csbexa.1 . . 3  |-  A  e. 
_V
2 csbexga 3885 . . 3  |-  ( ( A  e.  _V  /\  A. x  B  e.  _V )  ->  [_ A  /  x ]_ B  e.  _V )
31, 2mpan 400 . 2  |-  ( A. x  B  e.  _V  ->  [_ A  /  x ]_ B  e.  _V )
4 csbexa.2 . 2  |-  B  e. 
_V
53, 4mpg 1340 1  |-  [_ A  /  x ]_ B  e. 
_V
Colors of variables: wff set class
Syntax hints:   A.wal 1241    e. wcel 1393   _Vcvv 2557   [_csb 2852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sbc 2765  df-csb 2853
This theorem is referenced by:  dfmpt2  5844
  Copyright terms: Public domain W3C validator