| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vprc | Unicode version | ||
| Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
| Ref | Expression |
|---|---|
| vprc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nalset 3887 |
. . 3
| |
| 2 | vex 2560 |
. . . . . . 7
| |
| 3 | 2 | tbt 236 |
. . . . . 6
|
| 4 | 3 | albii 1359 |
. . . . 5
|
| 5 | dfcleq 2034 |
. . . . 5
| |
| 6 | 4, 5 | bitr4i 176 |
. . . 4
|
| 7 | 6 | exbii 1496 |
. . 3
|
| 8 | 1, 7 | mtbi 595 |
. 2
|
| 9 | isset 2561 |
. 2
| |
| 10 | 8, 9 | mtbir 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-ext 2022 ax-sep 3875 |
| This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-v 2559 |
| This theorem is referenced by: nvel 3889 vnex 3890 intexr 3904 intnexr 3905 snnex 4181 ruALT 4275 iprc 4600 |
| Copyright terms: Public domain | W3C validator |