Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  trintssm Unicode version

Theorem trintssm 3870
 Description: If is transitive and inhabited, then is a subset of . (Contributed by Jim Kingdon, 22-Aug-2018.)
Assertion
Ref Expression
trintssm
Distinct variable group:   ,

Proof of Theorem trintssm
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 vex 2560 . . . 4
21elint2 3622 . . 3
3 r19.2m 3309 . . . . 5
43ex 108 . . . 4
5 trel 3861 . . . . . 6
65expcomd 1330 . . . . 5
76rexlimdv 2432 . . . 4
84, 7sylan9 389 . . 3
92, 8syl5bi 141 . 2
109ssrdv 2951 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97  wex 1381   wcel 1393  wral 2306  wrex 2307   wss 2917  cint 3615   wtr 3854 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-in 2924  df-ss 2931  df-uni 3581  df-int 3616  df-tr 3855 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator