Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.2m Unicode version

Theorem r19.2m 3309
 Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1529). The restricted version is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.)
Assertion
Ref Expression
r19.2m
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem r19.2m
StepHypRef Expression
1 df-ral 2311 . . . 4
2 exintr 1525 . . . 4
31, 2sylbi 114 . . 3
4 df-rex 2312 . . 3
53, 4syl6ibr 151 . 2
65impcom 116 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97  wal 1241  wex 1381   wcel 1393  wral 2306  wrex 2307 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-ial 1427 This theorem depends on definitions:  df-bi 110  df-ral 2311  df-rex 2312 This theorem is referenced by:  intssunim  3637  riinm  3729  trintssm  3870  iinexgm  3908  xpiindim  4473  cnviinm  4859  eusvobj2  5498  iinerm  6178  r19.2uz  9591  climuni  9814
 Copyright terms: Public domain W3C validator