ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bm1.1 Structured version   Unicode version

Theorem bm1.1 2022
Description: Any set defined by a property is the only set defined by that property. Theorem 1.1 of [BellMachover] p. 462. (Contributed by NM, 30-Jun-1994.)
Hypothesis
Ref Expression
bm1.1.1  F/
Assertion
Ref Expression
bm1.1
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem bm1.1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfv 1418 . . . . . . . 8  F/
2 bm1.1.1 . . . . . . . 8  F/
31, 2nfbi 1478 . . . . . . 7  F/
43nfal 1465 . . . . . 6  F/
5 elequ2 1598 . . . . . . . 8
65bibi1d 222 . . . . . . 7
76albidv 1702 . . . . . 6
84, 7sbie 1671 . . . . 5
9 19.26 1367 . . . . . 6
10 biantr 858 . . . . . . . 8
1110alimi 1341 . . . . . . 7
12 ax-ext 2019 . . . . . . 7
1311, 12syl 14 . . . . . 6
149, 13sylbir 125 . . . . 5
158, 14sylan2b 271 . . . 4
1615gen2 1336 . . 3
1716jctr 298 . 2
18 nfv 1418 . . 3  F/
1918eu2 1941 . 2
2017, 19sylibr 137 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wb 98  wal 1240   F/wnf 1346  wex 1378  wsb 1642  weu 1897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900
This theorem is referenced by:  zfnuleu  3872
  Copyright terms: Public domain W3C validator