Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssexd Unicode version

Theorem ssexd 3897
 Description: A subclass of a set is a set. Deduction form of ssexg 3896. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ssexd.1
ssexd.2
Assertion
Ref Expression
ssexd

Proof of Theorem ssexd
StepHypRef Expression
1 ssexd.2 . 2
2 ssexd.1 . 2
3 ssexg 3896 . 2
41, 2, 3syl2anc 391 1
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1393  cvv 2557   wss 2917 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-in 2924  df-ss 2931 This theorem is referenced by:  fex2  5059  riotaexg  5472  opabbrex  5549  f1imaen2g  6273  genipv  6607  iseqss  9226  ovshftex  9420
 Copyright terms: Public domain W3C validator