ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axsep2 Unicode version

Theorem axsep2 3867
Description: A less restrictive version of the Separation Scheme ax-sep 3866, where variables and can both appear free in the wff , which can therefore be thought of as  , . This version was derived from the more restrictive ax-sep 3866 with no additional set theory axioms. (Contributed by NM, 10-Dec-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
axsep2
Distinct variable groups:   ,,   ,
Allowed substitution hints:   (,)

Proof of Theorem axsep2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eleq2 2098 . . . . . . 7
21anbi1d 438 . . . . . 6
3 anabs5 507 . . . . . 6
42, 3syl6bb 185 . . . . 5
54bibi2d 221 . . . 4
65albidv 1702 . . 3
76exbidv 1703 . 2
8 ax-sep 3866 . 2
97, 8chvarv 1809 1
Colors of variables: wff set class
Syntax hints:   wa 97   wb 98  wal 1240  wex 1378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-ext 2019  ax-sep 3866
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-cleq 2030  df-clel 2033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator