ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfauscl Unicode version

Theorem zfauscl 3877
Description: Separation Scheme (Aussonderung) using a class variable. To derive this from ax-sep 3875, we invoke the Axiom of Extensionality (indirectly via vtocl 2608), which is needed for the justification of class variable notation. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
zfauscl.1  |-  A  e. 
_V
Assertion
Ref Expression
zfauscl  |-  E. y A. x ( x  e.  y  <->  ( x  e.  A  /\  ph )
)
Distinct variable groups:    x, y, A    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem zfauscl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 zfauscl.1 . 2  |-  A  e. 
_V
2 eleq2 2101 . . . . . 6  |-  ( z  =  A  ->  (
x  e.  z  <->  x  e.  A ) )
32anbi1d 438 . . . . 5  |-  ( z  =  A  ->  (
( x  e.  z  /\  ph )  <->  ( x  e.  A  /\  ph )
) )
43bibi2d 221 . . . 4  |-  ( z  =  A  ->  (
( x  e.  y  <-> 
( x  e.  z  /\  ph ) )  <-> 
( x  e.  y  <-> 
( x  e.  A  /\  ph ) ) ) )
54albidv 1705 . . 3  |-  ( z  =  A  ->  ( A. x ( x  e.  y  <->  ( x  e.  z  /\  ph )
)  <->  A. x ( x  e.  y  <->  ( x  e.  A  /\  ph )
) ) )
65exbidv 1706 . 2  |-  ( z  =  A  ->  ( E. y A. x ( x  e.  y  <->  ( x  e.  z  /\  ph )
)  <->  E. y A. x
( x  e.  y  <-> 
( x  e.  A  /\  ph ) ) ) )
7 ax-sep 3875 . 2  |-  E. y A. x ( x  e.  y  <->  ( x  e.  z  /\  ph )
)
81, 6, 7vtocl 2608 1  |-  E. y A. x ( x  e.  y  <->  ( x  e.  A  /\  ph )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98   A.wal 1241    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-ext 2022  ax-sep 3875
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-v 2559
This theorem is referenced by:  inex1  3891  bj-d0clsepcl  10049
  Copyright terms: Public domain W3C validator