ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anabs5 Unicode version

Theorem anabs5 507
Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
Assertion
Ref Expression
anabs5  |-  ( (
ph  /\  ( ph  /\ 
ps ) )  <->  ( ph  /\ 
ps ) )

Proof of Theorem anabs5
StepHypRef Expression
1 ibar 285 . . 3  |-  ( ph  ->  ( ps  <->  ( ph  /\ 
ps ) ) )
21bicomd 129 . 2  |-  ( ph  ->  ( ( ph  /\  ps )  <->  ps ) )
32pm5.32i 427 1  |-  ( (
ph  /\  ( ph  /\ 
ps ) )  <->  ( ph  /\ 
ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  mo3h  1953  indif  3180  axsep2  3876
  Copyright terms: Public domain W3C validator