![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opabbidv | Unicode version |
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction rule). (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbidv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
opabbidv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1418 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfv 1418 |
. 2
![]() ![]() ![]() ![]() | |
3 | opabbidv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | opabbid 3813 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-11 1394 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-opab 3810 |
This theorem is referenced by: opabbii 3815 csbopabg 3826 xpeq1 4302 xpeq2 4303 opabbi2dv 4428 csbcnvg 4462 resopab2 4598 cores 4767 xpcom 4807 dffn5im 5162 f1oiso2 5409 f1ocnvd 5644 ofreq 5657 sprmpt2 5798 |
Copyright terms: Public domain | W3C validator |