ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq2 Unicode version

Theorem xpeq2 4360
Description: Equality theorem for cross product. (Contributed by NM, 5-Jul-1994.)
Assertion
Ref Expression
xpeq2  |-  ( A  =  B  ->  ( C  X.  A )  =  ( C  X.  B
) )

Proof of Theorem xpeq2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2101 . . . 4  |-  ( A  =  B  ->  (
y  e.  A  <->  y  e.  B ) )
21anbi2d 437 . . 3  |-  ( A  =  B  ->  (
( x  e.  C  /\  y  e.  A
)  <->  ( x  e.  C  /\  y  e.  B ) ) )
32opabbidv 3823 . 2  |-  ( A  =  B  ->  { <. x ,  y >.  |  ( x  e.  C  /\  y  e.  A ) }  =  { <. x ,  y >.  |  ( x  e.  C  /\  y  e.  B ) } )
4 df-xp 4351 . 2  |-  ( C  X.  A )  =  { <. x ,  y
>.  |  ( x  e.  C  /\  y  e.  A ) }
5 df-xp 4351 . 2  |-  ( C  X.  B )  =  { <. x ,  y
>.  |  ( x  e.  C  /\  y  e.  B ) }
63, 4, 53eqtr4g 2097 1  |-  ( A  =  B  ->  ( C  X.  A )  =  ( C  X.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   {copab 3817    X. cxp 4343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-opab 3819  df-xp 4351
This theorem is referenced by:  xpeq12  4364  xpeq2i  4366  xpeq2d  4369  xpeq0r  4746  xpdisj2  4748  xpcomeng  6302
  Copyright terms: Public domain W3C validator