Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabbidv GIF version

Theorem opabbidv 3823
 Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction rule). (Contributed by NM, 15-May-1995.)
Hypothesis
Ref Expression
opabbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
opabbidv (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem opabbidv
StepHypRef Expression
1 nfv 1421 . 2 𝑥𝜑
2 nfv 1421 . 2 𝑦𝜑
3 opabbidv.1 . 2 (𝜑 → (𝜓𝜒))
41, 2, 3opabbid 3822 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒})
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98   = wceq 1243  {copab 3817 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-opab 3819 This theorem is referenced by:  opabbii  3824  csbopabg  3835  xpeq1  4359  xpeq2  4360  opabbi2dv  4485  csbcnvg  4519  resopab2  4655  cores  4824  xpcom  4864  dffn5im  5219  f1oiso2  5466  f1ocnvd  5702  ofreq  5715  sprmpt2  5857  shftfvalg  9419  shftfval  9422  2shfti  9432
 Copyright terms: Public domain W3C validator