Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpteq2da | Unicode version |
Description: Slightly more general equality inference for the maps to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq2da.1 | |
mpteq2da.2 |
Ref | Expression |
---|---|
mpteq2da |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2040 | . . 3 | |
2 | 1 | ax-gen 1338 | . 2 |
3 | mpteq2da.1 | . . 3 | |
4 | mpteq2da.2 | . . . 4 | |
5 | 4 | ex 108 | . . 3 |
6 | 3, 5 | ralrimi 2390 | . 2 |
7 | mpteq12f 3837 | . 2 | |
8 | 2, 6, 7 | sylancr 393 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wal 1241 wceq 1243 wnf 1349 wcel 1393 wral 2306 cmpt 3818 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-ral 2311 df-opab 3819 df-mpt 3820 |
This theorem is referenced by: mpteq2dva 3847 |
Copyright terms: Public domain | W3C validator |