Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neirr | Unicode version |
Description: No class is unequal to itself. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Proof rewritten by Jim Kingdon, 15-May-2018.) |
Ref | Expression |
---|---|
neirr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2040 | . . 3 | |
2 | 1 | notnoti 574 | . 2 |
3 | df-ne 2206 | . . 3 | |
4 | 3 | notbii 594 | . 2 |
5 | 2, 4 | mpbir 134 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wceq 1243 wne 2204 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-gen 1338 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 df-ne 2206 |
This theorem is referenced by: neldifsn 3497 0nnq 6462 1nuz2 8543 |
Copyright terms: Public domain | W3C validator |