ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabex3 Unicode version

Theorem oprabex3 5756
Description: Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004.)
Hypotheses
Ref Expression
oprabex3.1  |-  H  e. 
_V
oprabex3.2  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( H  X.  H
)  /\  y  e.  ( H  X.  H
) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  R
) ) }
Assertion
Ref Expression
oprabex3  |-  F  e. 
_V
Distinct variable groups:    x, y, z, w, v, u, f, H    x, R, y, z
Allowed substitution hints:    R( w, v, u, f)    F( x, y, z, w, v, u, f)

Proof of Theorem oprabex3
StepHypRef Expression
1 oprabex3.1 . . 3  |-  H  e. 
_V
21, 1xpex 4453 . 2  |-  ( H  X.  H )  e. 
_V
3 moeq 2716 . . . . . 6  |-  E* z 
z  =  R
43mosubop 4406 . . . . 5  |-  E* z E. u E. f ( y  =  <. u ,  f >.  /\  z  =  R )
54mosubop 4406 . . . 4  |-  E* z E. w E. v ( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  R ) )
6 anass 381 . . . . . . . 8  |-  ( ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  <->  ( x  =  <. w ,  v
>.  /\  ( y  = 
<. u ,  f >.  /\  z  =  R
) ) )
762exbii 1497 . . . . . . 7  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  <->  E. u E. f ( x  = 
<. w ,  v >.  /\  ( y  =  <. u ,  f >.  /\  z  =  R ) ) )
8 19.42vv 1788 . . . . . . 7  |-  ( E. u E. f ( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  R ) )  <->  ( x  =  <. w ,  v
>.  /\  E. u E. f ( y  = 
<. u ,  f >.  /\  z  =  R
) ) )
97, 8bitri 173 . . . . . 6  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  <->  ( x  =  <. w ,  v
>.  /\  E. u E. f ( y  = 
<. u ,  f >.  /\  z  =  R
) ) )
1092exbii 1497 . . . . 5  |-  ( E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  <->  E. w E. v ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  R ) ) )
1110mobii 1937 . . . 4  |-  ( E* z E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  R
)  <->  E* z E. w E. v ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  R ) ) )
125, 11mpbir 134 . . 3  |-  E* z E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )
1312a1i 9 . 2  |-  ( ( x  e.  ( H  X.  H )  /\  y  e.  ( H  X.  H ) )  ->  E* z E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  R
) )
14 oprabex3.2 . 2  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( H  X.  H
)  /\  y  e.  ( H  X.  H
) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  R
) ) }
152, 2, 13, 14oprabex 5755 1  |-  F  e. 
_V
Colors of variables: wff set class
Syntax hints:    /\ wa 97    = wceq 1243   E.wex 1381    e. wcel 1393   E*wmo 1901   _Vcvv 2557   <.cop 3378    X. cxp 4343   {coprab 5513
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-oprab 5516
This theorem is referenced by:  addvalex  6920
  Copyright terms: Public domain W3C validator