Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-zfpair2 Structured version   Unicode version

Theorem bj-zfpair2 7133
 Description: Proof of zfpair2 3919 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-zfpair2

Proof of Theorem bj-zfpair2
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdeq 7047 . . . . 5 BOUNDED
2 ax-bdeq 7047 . . . . 5 BOUNDED
31, 2ax-bdor 7043 . . . 4 BOUNDED
4 ax-pr 3918 . . . 4
53, 4bdbm1.3ii 7117 . . 3
6 dfcleq 2016 . . . . 5
7 vex 2538 . . . . . . . 8
87elpr 3368 . . . . . . 7
98bibi2i 216 . . . . . 6
109albii 1339 . . . . 5
116, 10bitri 173 . . . 4
1211exbii 1478 . . 3
135, 12mpbir 134 . 2
1413issetri 2542 1
 Colors of variables: wff set class Syntax hints:   wb 98   wo 616  wal 1226   wceq 1228  wex 1362   wcel 1374  cvv 2535  cpr 3351 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-14 1386  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004  ax-pr 3918  ax-bdor 7043  ax-bdeq 7047  ax-bdsep 7111 This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-v 2537  df-un 2899  df-sn 3356  df-pr 3357 This theorem is referenced by:  bj-prexg  7134
 Copyright terms: Public domain W3C validator