Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-zfpair2 GIF version

Theorem bj-zfpair2 10030
 Description: Proof of zfpair2 3945 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-zfpair2 {𝑥, 𝑦} ∈ V

Proof of Theorem bj-zfpair2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdeq 9940 . . . . 5 BOUNDED 𝑤 = 𝑥
2 ax-bdeq 9940 . . . . 5 BOUNDED 𝑤 = 𝑦
31, 2ax-bdor 9936 . . . 4 BOUNDED (𝑤 = 𝑥𝑤 = 𝑦)
4 ax-pr 3944 . . . 4 𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
53, 4bdbm1.3ii 10011 . . 3 𝑧𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦))
6 dfcleq 2034 . . . . 5 (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤𝑧𝑤 ∈ {𝑥, 𝑦}))
7 vex 2560 . . . . . . . 8 𝑤 ∈ V
87elpr 3396 . . . . . . 7 (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥𝑤 = 𝑦))
98bibi2i 216 . . . . . 6 ((𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) ↔ (𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
109albii 1359 . . . . 5 (∀𝑤(𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) ↔ ∀𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
116, 10bitri 173 . . . 4 (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
1211exbii 1496 . . 3 (∃𝑧 𝑧 = {𝑥, 𝑦} ↔ ∃𝑧𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
135, 12mpbir 134 . 2 𝑧 𝑧 = {𝑥, 𝑦}
1413issetri 2564 1 {𝑥, 𝑦} ∈ V
 Colors of variables: wff set class Syntax hints:   ↔ wb 98   ∨ wo 629  ∀wal 1241   = wceq 1243  ∃wex 1381   ∈ wcel 1393  Vcvv 2557  {cpr 3376 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-pr 3944  ax-bdor 9936  ax-bdeq 9940  ax-bdsep 10004 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382 This theorem is referenced by:  bj-prexg  10031
 Copyright terms: Public domain W3C validator