Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-zfpair2 Structured version   GIF version

Theorem bj-zfpair2 6812
Description: Proof of zfpair2 3917 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-zfpair2 {x, y} V

Proof of Theorem bj-zfpair2
Dummy variables z w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdeq 6726 . . . . 5 BOUNDED w = x
2 ax-bdeq 6726 . . . . 5 BOUNDED w = y
31, 2ax-bdor 6722 . . . 4 BOUNDED (w = x w = y)
4 ax-pr 3916 . . . 4 zw((w = x w = y) → w z)
53, 4bdbm1.3ii 6796 . . 3 zw(w z ↔ (w = x w = y))
6 dfcleq 2016 . . . . 5 (z = {x, y} ↔ w(w zw {x, y}))
7 vex 2536 . . . . . . . 8 w V
87elpr 3366 . . . . . . 7 (w {x, y} ↔ (w = x w = y))
98bibi2i 216 . . . . . 6 ((w zw {x, y}) ↔ (w z ↔ (w = x w = y)))
109albii 1339 . . . . 5 (w(w zw {x, y}) ↔ w(w z ↔ (w = x w = y)))
116, 10bitri 173 . . . 4 (z = {x, y} ↔ w(w z ↔ (w = x w = y)))
1211exbii 1478 . . 3 (z z = {x, y} ↔ zw(w z ↔ (w = x w = y)))
135, 12mpbir 134 . 2 z z = {x, y}
1413issetri 2540 1 {x, y} V
Colors of variables: wff set class
Syntax hints:  wb 98   wo 616  wal 1226   = wceq 1228  wex 1362   wcel 1374  Vcvv 2533  {cpr 3349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-14 1386  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004  ax-pr 3916  ax-bdor 6722  ax-bdeq 6726  ax-bdsep 6790
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-v 2535  df-un 2897  df-sn 3354  df-pr 3355
This theorem is referenced by:  bj-prexg  6813
  Copyright terms: Public domain W3C validator