ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimor Unicode version

Theorem dvelimor 1894
Description: Disjunctive distinct variable constraint elimination. A user of this theorem starts with a formula  ph (containing  z) and a distinct variable constraint between 
x and  z. The theorem makes it possible to replace the distinct variable constraint with the disjunct  A. x x  =  y ( ps is just a version of  ph with  y substituted for  z). (Contributed by Jim Kingdon, 11-May-2018.)
Hypotheses
Ref Expression
dvelimor.1  |-  F/ x ph
dvelimor.2  |-  ( z  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
dvelimor  |-  ( A. x  x  =  y  \/  F/ x ps )
Distinct variable groups:    ps, z    x, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y)

Proof of Theorem dvelimor
StepHypRef Expression
1 ax-bndl 1399 . . . . . 6  |-  ( A. x  x  =  z  \/  ( A. x  x  =  y  \/  A. z A. x ( z  =  y  ->  A. x  z  =  y )
) )
2 orcom 647 . . . . . . 7  |-  ( ( A. x  x  =  y  \/  A. z A. x ( z  =  y  ->  A. x  z  =  y )
)  <->  ( A. z A. x ( z  =  y  ->  A. x  z  =  y )  \/  A. x  x  =  y ) )
32orbi2i 679 . . . . . 6  |-  ( ( A. x  x  =  z  \/  ( A. x  x  =  y  \/  A. z A. x
( z  =  y  ->  A. x  z  =  y ) ) )  <-> 
( A. x  x  =  z  \/  ( A. z A. x ( z  =  y  ->  A. x  z  =  y )  \/  A. x  x  =  y
) ) )
41, 3mpbi 133 . . . . 5  |-  ( A. x  x  =  z  \/  ( A. z A. x ( z  =  y  ->  A. x  z  =  y )  \/  A. x  x  =  y ) )
5 orass 684 . . . . 5  |-  ( ( ( A. x  x  =  z  \/  A. z A. x ( z  =  y  ->  A. x  z  =  y )
)  \/  A. x  x  =  y )  <->  ( A. x  x  =  z  \/  ( A. z A. x ( z  =  y  ->  A. x  z  =  y )  \/  A. x  x  =  y ) ) )
64, 5mpbir 134 . . . 4  |-  ( ( A. x  x  =  z  \/  A. z A. x ( z  =  y  ->  A. x  z  =  y )
)  \/  A. x  x  =  y )
7 nfae 1607 . . . . . . 7  |-  F/ z A. x  x  =  z
8 a16nf 1746 . . . . . . 7  |-  ( A. x  x  =  z  ->  F/ x ( z  =  y  ->  ph )
)
97, 8alrimi 1415 . . . . . 6  |-  ( A. x  x  =  z  ->  A. z F/ x
( z  =  y  ->  ph ) )
10 df-nf 1350 . . . . . . . 8  |-  ( F/ x  z  =  y  <->  A. x ( z  =  y  ->  A. x  z  =  y )
)
11 id 19 . . . . . . . . 9  |-  ( F/ x  z  =  y  ->  F/ x  z  =  y )
12 dvelimor.1 . . . . . . . . . 10  |-  F/ x ph
1312a1i 9 . . . . . . . . 9  |-  ( F/ x  z  =  y  ->  F/ x ph )
1411, 13nfimd 1477 . . . . . . . 8  |-  ( F/ x  z  =  y  ->  F/ x ( z  =  y  ->  ph ) )
1510, 14sylbir 125 . . . . . . 7  |-  ( A. x ( z  =  y  ->  A. x  z  =  y )  ->  F/ x ( z  =  y  ->  ph )
)
1615alimi 1344 . . . . . 6  |-  ( A. z A. x ( z  =  y  ->  A. x  z  =  y )  ->  A. z F/ x
( z  =  y  ->  ph ) )
179, 16jaoi 636 . . . . 5  |-  ( ( A. x  x  =  z  \/  A. z A. x ( z  =  y  ->  A. x  z  =  y )
)  ->  A. z F/ x ( z  =  y  ->  ph ) )
1817orim1i 677 . . . 4  |-  ( ( ( A. x  x  =  z  \/  A. z A. x ( z  =  y  ->  A. x  z  =  y )
)  \/  A. x  x  =  y )  ->  ( A. z F/ x ( z  =  y  ->  ph )  \/ 
A. x  x  =  y ) )
196, 18ax-mp 7 . . 3  |-  ( A. z F/ x ( z  =  y  ->  ph )  \/  A. x  x  =  y )
20 orcom 647 . . 3  |-  ( ( A. z F/ x
( z  =  y  ->  ph )  \/  A. x  x  =  y
)  <->  ( A. x  x  =  y  \/  A. z F/ x ( z  =  y  ->  ph ) ) )
2119, 20mpbi 133 . 2  |-  ( A. x  x  =  y  \/  A. z F/ x
( z  =  y  ->  ph ) )
22 nfalt 1470 . . . 4  |-  ( A. z F/ x ( z  =  y  ->  ph )  ->  F/ x A. z
( z  =  y  ->  ph ) )
23 ax-17 1419 . . . . . 6  |-  ( ps 
->  A. z ps )
24 dvelimor.2 . . . . . 6  |-  ( z  =  y  ->  ( ph 
<->  ps ) )
2523, 24equsalh 1614 . . . . 5  |-  ( A. z ( z  =  y  ->  ph )  <->  ps )
2625nfbii 1362 . . . 4  |-  ( F/ x A. z ( z  =  y  ->  ph )  <->  F/ x ps )
2722, 26sylib 127 . . 3  |-  ( A. z F/ x ( z  =  y  ->  ph )  ->  F/ x ps )
2827orim2i 678 . 2  |-  ( ( A. x  x  =  y  \/  A. z F/ x ( z  =  y  ->  ph ) )  ->  ( A. x  x  =  y  \/  F/ x ps ) )
2921, 28ax-mp 7 1  |-  ( A. x  x  =  y  \/  F/ x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98    \/ wo 629   A.wal 1241   F/wnf 1349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646
This theorem is referenced by:  nfsb4or  1899  rgen2a  2375
  Copyright terms: Public domain W3C validator