Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtri Unicode version

Theorem eqbrtri 3783
 Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqbrtr.1
eqbrtr.2
Assertion
Ref Expression
eqbrtri

Proof of Theorem eqbrtri
StepHypRef Expression
1 eqbrtr.2 . 2
2 eqbrtr.1 . . 3
32breq1i 3771 . 2
41, 3mpbir 134 1
 Colors of variables: wff set class Syntax hints:   wceq 1243   class class class wbr 3764 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765 This theorem is referenced by:  eqbrtrri  3785  3brtr4i  3792  neg1lt0  8025  halflt1  8142  numlti  8391  ex-fl  9895
 Copyright terms: Public domain W3C validator