ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt2fun Unicode version

Theorem mpt2fun 5545
Description: The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.)
Hypothesis
Ref Expression
mpt2fun.1  F  ,  |->  C
Assertion
Ref Expression
mpt2fun  Fun  F
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)    C(,)    F(,)

Proof of Theorem mpt2fun
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqtr3 2056 . . . . . 6  C  C
21ad2ant2l 477 . . . . 5  C  C
32gen2 1336 . . . 4  C  C
4 eqeq1 2043 . . . . . 6  C  C
54anbi2d 437 . . . . 5  C  C
65mo4 1958 . . . 4  C  C  C
73, 6mpbir 134 . . 3  C
87funoprab 5543 . 2  Fun  { <. <. , 
>. ,  >.  |  C }
9 mpt2fun.1 . . . 4  F  ,  |->  C
10 df-mpt2 5460 . . . 4  ,  |->  C  { <. <. ,  >. ,  >.  |  C }
119, 10eqtri 2057 . . 3  F  { <. <. , 
>. ,  >.  |  C }
1211funeqi 4865 . 2  Fun 
F  Fun  { <. <. ,  >. ,  >.  |  C }
138, 12mpbir 134 1  Fun  F
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97  wal 1240   wceq 1242   wcel 1390  wmo 1898   Fun wfun 4839   {coprab 5456    |-> cmpt2 5457
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-fun 4847  df-oprab 5459  df-mpt2 5460
This theorem is referenced by:  elmpt2cl  5640  ofexg  5658  mpt2exxg  5775  mpt2xopn0yelv  5795
  Copyright terms: Public domain W3C validator