Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axpow3 | Unicode version |
Description: A variant of the Axiom of Power Sets ax-pow 3927. For any set , there exists a set whose members are exactly the subsets of i.e. the power set of . Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
Ref | Expression |
---|---|
axpow3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axpow2 3929 | . . 3 | |
2 | 1 | bm1.3ii 3878 | . 2 |
3 | bicom 128 | . . . 4 | |
4 | 3 | albii 1359 | . . 3 |
5 | 4 | exbii 1496 | . 2 |
6 | 2, 5 | mpbir 134 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 98 wal 1241 wex 1381 wss 2917 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-in 2924 df-ss 2931 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |