ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpow3 GIF version

Theorem axpow3 3930
Description: A variant of the Axiom of Power Sets ax-pow 3927. For any set 𝑥, there exists a set 𝑦 whose members are exactly the subsets of 𝑥 i.e. the power set of 𝑥. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
axpow3 𝑦𝑧(𝑧𝑥𝑧𝑦)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem axpow3
StepHypRef Expression
1 axpow2 3929 . . 3 𝑦𝑧(𝑧𝑥𝑧𝑦)
21bm1.3ii 3878 . 2 𝑦𝑧(𝑧𝑦𝑧𝑥)
3 bicom 128 . . . 4 ((𝑧𝑥𝑧𝑦) ↔ (𝑧𝑦𝑧𝑥))
43albii 1359 . . 3 (∀𝑧(𝑧𝑥𝑧𝑦) ↔ ∀𝑧(𝑧𝑦𝑧𝑥))
54exbii 1496 . 2 (∃𝑦𝑧(𝑧𝑥𝑧𝑦) ↔ ∃𝑦𝑧(𝑧𝑦𝑧𝑥))
62, 5mpbir 134 1 𝑦𝑧(𝑧𝑥𝑧𝑦)
Colors of variables: wff set class
Syntax hints:  wb 98  wal 1241  wex 1381  wss 2917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-in 2924  df-ss 2931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator