ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  th3qcor Unicode version

Theorem th3qcor 6146
Description: Corollary of Theorem 3Q of [Enderton] p. 60. (Contributed by NM, 12-Nov-1995.) (Revised by David Abernethy, 4-Jun-2013.)
Hypotheses
Ref Expression
th3q.1  .~  _V
th3q.2  .~  Er  S  X.  S
th3q.4  S  S  S  t  S  s  S  S  S  h  S  <. , 
>.  .~  <. ,  t
>.  <. s , 
>.  .~  <. ,  h >.  <. ,  >.  .+  <. s ,  >.  .~  <. ,  t
>.  .+  <. ,  h >.
th3q.5  G  { <. <. , 
>. ,  >.  |  S  X.  S /.  .~  S  X.  S /.  .~  t  <. ,  >. 
.~  <. ,  t
>.  .~  <. ,  >.  .+ 
<. ,  t >.  .~  }
Assertion
Ref Expression
th3qcor  Fun  G
Distinct variable groups:   ,,,,,, t, s,,, h, 
.~   , S,,,,,, t, s,,, h   ,  .+ ,,,,,, t, s,,, h
Allowed substitution hints:    G(,,,,,, t,,, h, s)

Proof of Theorem th3qcor
StepHypRef Expression
1 th3q.1 . . . . 5  .~  _V
2 th3q.2 . . . . 5  .~  Er  S  X.  S
3 th3q.4 . . . . 5  S  S  S  t  S  s  S  S  S  h  S  <. , 
>.  .~  <. ,  t
>.  <. s , 
>.  .~  <. ,  h >.  <. ,  >.  .+  <. s ,  >.  .~  <. ,  t
>.  .+  <. ,  h >.
41, 2, 3th3qlem2 6145 . . . 4  S  X.  S
/.  .~  S  X.  S /.  .~  t  <. ,  >. 
.~  <. ,  t
>.  .~  <. ,  >.  .+ 
<. ,  t >.  .~
5 moanimv 1972 . . . 4  S  X.  S /.  .~  S  X.  S /.  .~  t  <. ,  >.  .~  <. ,  t >.  .~  <. , 
>.  .+  <. ,  t
>.  .~  S  X.  S /.  .~  S  X.  S /.  .~  t  <. ,  >.  .~  <. ,  t >.  .~  <. , 
>.  .+  <. ,  t
>.  .~
64, 5mpbir 134 . . 3  S  X.  S /.  .~  S  X.  S /.  .~  t  <. ,  >.  .~  <. ,  t >.  .~  <. , 
>.  .+  <. ,  t
>.  .~
76funoprab 5543 . 2  Fun  { <. <. , 
>. ,  >.  |  S  X.  S /.  .~  S  X.  S /.  .~  t  <. ,  >. 
.~  <. ,  t
>.  .~  <. ,  >.  .+ 
<. ,  t >.  .~  }
8 th3q.5 . . 3  G  { <. <. , 
>. ,  >.  |  S  X.  S /.  .~  S  X.  S /.  .~  t  <. ,  >. 
.~  <. ,  t
>.  .~  <. ,  >.  .+ 
<. ,  t >.  .~  }
98funeqi 4865 . 2  Fun 
G  Fun  { <. <. ,  >. ,  >.  |  S  X.  S /.  .~  S  X.  S /.  .~  t  <. ,  >. 
.~  <. ,  t
>.  .~  <. ,  >.  .+ 
<. ,  t >.  .~  }
107, 9mpbir 134 1  Fun  G
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wceq 1242  wex 1378   wcel 1390  wmo 1898   _Vcvv 2551   <.cop 3370   class class class wbr 3755    X. cxp 4286   Fun wfun 4839  (class class class)co 5455   {coprab 5456    Er wer 6039  cec 6040   /.cqs 6041
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-sbc 2759  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fv 4853  df-ov 5458  df-oprab 5459  df-er 6042  df-ec 6044  df-qs 6048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator