![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funeqi | Unicode version |
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
funeqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
funeqi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | funeq 4864 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-in 2918 df-ss 2925 df-br 3756 df-opab 3810 df-rel 4295 df-cnv 4296 df-co 4297 df-fun 4847 |
This theorem is referenced by: funmpt 4881 funmpt2 4882 funprg 4892 funtpg 4893 funtp 4895 funcnvuni 4911 f1cnvcnv 5043 f1co 5044 fun11iun 5090 f10 5103 funoprabg 5542 mpt2fun 5545 ovidig 5560 tposfun 5816 rdgfun 5900 th3qcor 6146 ssdomg 6194 |
Copyright terms: Public domain | W3C validator |