ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn1suc Unicode version

Theorem nn1suc 7933
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.)
Hypotheses
Ref Expression
nn1suc.1  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
nn1suc.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  ch ) )
nn1suc.4  |-  ( x  =  A  ->  ( ph 
<->  th ) )
nn1suc.5  |-  ps
nn1suc.6  |-  ( y  e.  NN  ->  ch )
Assertion
Ref Expression
nn1suc  |-  ( A  e.  NN  ->  th )
Distinct variable groups:    x, y, A    ps, x    ch, x    th, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)

Proof of Theorem nn1suc
StepHypRef Expression
1 nn1suc.5 . . . . 5  |-  ps
2 1ex 7022 . . . . . 6  |-  1  e.  _V
3 nn1suc.1 . . . . . 6  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
42, 3sbcie 2797 . . . . 5  |-  ( [.
1  /  x ]. ph  <->  ps )
51, 4mpbir 134 . . . 4  |-  [. 1  /  x ]. ph
6 1nn 7925 . . . . . . 7  |-  1  e.  NN
7 eleq1 2100 . . . . . . 7  |-  ( A  =  1  ->  ( A  e.  NN  <->  1  e.  NN ) )
86, 7mpbiri 157 . . . . . 6  |-  ( A  =  1  ->  A  e.  NN )
9 nn1suc.4 . . . . . . 7  |-  ( x  =  A  ->  ( ph 
<->  th ) )
109sbcieg 2795 . . . . . 6  |-  ( A  e.  NN  ->  ( [. A  /  x ]. ph  <->  th ) )
118, 10syl 14 . . . . 5  |-  ( A  =  1  ->  ( [. A  /  x ]. ph  <->  th ) )
12 dfsbcq 2766 . . . . 5  |-  ( A  =  1  ->  ( [. A  /  x ]. ph  <->  [. 1  /  x ]. ph ) )
1311, 12bitr3d 179 . . . 4  |-  ( A  =  1  ->  ( th 
<-> 
[. 1  /  x ]. ph ) )
145, 13mpbiri 157 . . 3  |-  ( A  =  1  ->  th )
1514a1i 9 . 2  |-  ( A  e.  NN  ->  ( A  =  1  ->  th ) )
16 elisset 2568 . . . 4  |-  ( ( A  -  1 )  e.  NN  ->  E. y 
y  =  ( A  -  1 ) )
17 eleq1 2100 . . . . . 6  |-  ( y  =  ( A  - 
1 )  ->  (
y  e.  NN  <->  ( A  -  1 )  e.  NN ) )
1817pm5.32ri 428 . . . . 5  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  <-> 
( ( A  - 
1 )  e.  NN  /\  y  =  ( A  -  1 ) ) )
19 nn1suc.6 . . . . . . 7  |-  ( y  e.  NN  ->  ch )
2019adantr 261 . . . . . 6  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  ->  ch )
21 nnre 7921 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  RR )
22 peano2re 7149 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y  +  1 )  e.  RR )
23 nn1suc.3 . . . . . . . . . 10  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  ch ) )
2423sbcieg 2795 . . . . . . . . 9  |-  ( ( y  +  1 )  e.  RR  ->  ( [. ( y  +  1 )  /  x ]. ph  <->  ch ) )
2521, 22, 243syl 17 . . . . . . . 8  |-  ( y  e.  NN  ->  ( [. ( y  +  1 )  /  x ]. ph  <->  ch ) )
2625adantr 261 . . . . . . 7  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  ->  ( [. (
y  +  1 )  /  x ]. ph  <->  ch )
)
27 oveq1 5519 . . . . . . . . 9  |-  ( y  =  ( A  - 
1 )  ->  (
y  +  1 )  =  ( ( A  -  1 )  +  1 ) )
2827sbceq1d 2769 . . . . . . . 8  |-  ( y  =  ( A  - 
1 )  ->  ( [. ( y  +  1 )  /  x ]. ph  <->  [. ( ( A  - 
1 )  +  1 )  /  x ]. ph ) )
2928adantl 262 . . . . . . 7  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  ->  ( [. (
y  +  1 )  /  x ]. ph  <->  [. ( ( A  -  1 )  +  1 )  /  x ]. ph ) )
3026, 29bitr3d 179 . . . . . 6  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  ->  ( ch  <->  [. ( ( A  -  1 )  +  1 )  /  x ]. ph ) )
3120, 30mpbid 135 . . . . 5  |-  ( ( y  e.  NN  /\  y  =  ( A  -  1 ) )  ->  [. ( ( A  -  1 )  +  1 )  /  x ]. ph )
3218, 31sylbir 125 . . . 4  |-  ( ( ( A  -  1 )  e.  NN  /\  y  =  ( A  -  1 ) )  ->  [. ( ( A  -  1 )  +  1 )  /  x ]. ph )
3316, 32exlimddv 1778 . . 3  |-  ( ( A  -  1 )  e.  NN  ->  [. (
( A  -  1 )  +  1 )  /  x ]. ph )
34 nncn 7922 . . . . . 6  |-  ( A  e.  NN  ->  A  e.  CC )
35 ax-1cn 6977 . . . . . 6  |-  1  e.  CC
36 npcan 7220 . . . . . 6  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  - 
1 )  +  1 )  =  A )
3734, 35, 36sylancl 392 . . . . 5  |-  ( A  e.  NN  ->  (
( A  -  1 )  +  1 )  =  A )
3837sbceq1d 2769 . . . 4  |-  ( A  e.  NN  ->  ( [. ( ( A  - 
1 )  +  1 )  /  x ]. ph  <->  [. A  /  x ]. ph ) )
3938, 10bitrd 177 . . 3  |-  ( A  e.  NN  ->  ( [. ( ( A  - 
1 )  +  1 )  /  x ]. ph  <->  th ) )
4033, 39syl5ib 143 . 2  |-  ( A  e.  NN  ->  (
( A  -  1 )  e.  NN  ->  th ) )
41 nn1m1nn 7932 . 2  |-  ( A  e.  NN  ->  ( A  =  1  \/  ( A  -  1
)  e.  NN ) )
4215, 40, 41mpjaod 638 1  |-  ( A  e.  NN  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   [.wsbc 2764  (class class class)co 5512   CCcc 6887   RRcr 6888   1c1 6890    + caddc 6892    - cmin 7182   NNcn 7914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-sub 7184  df-inn 7915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator