Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcie Unicode version

Theorem sbcie 2797
 Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.)
Hypotheses
Ref Expression
sbcie.1
sbcie.2
Assertion
Ref Expression
sbcie
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem sbcie
StepHypRef Expression
1 sbcie.1 . 2
2 sbcie.2 . . 3
32sbcieg 2795 . 2
41, 3ax-mp 7 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98   wceq 1243   wcel 1393  cvv 2557  wsbc 2764 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sbc 2765 This theorem is referenced by:  findcard2  6346  findcard2s  6347  ac6sfi  6352  nn1suc  7933  indstr  8536
 Copyright terms: Public domain W3C validator